Building Energy Rating (BER) # BER for the building detailed below is: **D1** Address APT 3 GORT LEINN OLD MONIVEA ROAD **GALWAY** CO. GALWAY **BER Number** 103062758 Date of Issue 12/05/2011 Valid Until 12/05/2021 Assessor Number 101797 Assessor Company No 101797 The Building Energy Rating (BER) is an indication of the energy performance of this dwelling. It covers energy use for space heating, water heating, ventilation and lighting, calculated on the basis of standard occupancy. It is expressed as primary energy use per unit floor area per year (kWh/m²/yr). 'A' rated properties are the most energy efficient and will tend to have the lowest energy bills. Carbon Dioxide (CO₂) **Emissions Indicator** kgCO₂/m²/yr BEST 0 Calculated annual CO2 emissions 60.63 kgCO2/m2/yr WORST >120 The less CO₂ produced, the less the dwelling contributes to global warming. IMPORTANT: This BER is calculated on the basis of data provided to and by the BER Assessor, and using the version of the assessment software quoted below. A future BER assigned to this dwelling may be different, as a result of changes to the dwelling or to the assessment software. # Building Energy Rating (BER) ADVISORY REPORT Energy use in our homes is responsible for more than a quarter of Ireland's total CO_2 emissions. Reducing energy use will save you money and is good for the environment. This report provides advice on improving your Building Energy Rating, reducing your energy usage and costs, while improving the comfort and condition of your home. Report Date: 12/05/2011 Assessor: Fergal Costello Address: APT 3 GORT LEINN OLD MONIVEA ROAD **GALWAY** CO. GALWAY BER: 103062758 MPRN: 10300897163 ## **About this Advisory Report** Energy use in our homes is responsible for almost a quarter of Ireland's total CO₂ emissions. Reducing energy use will save you money and is good for the environment. This report provides advice on improving your BER, reducing your energy usage and costs, while improving the comfort of your home. The improvement measures recommended in this report are not mandatory and can be completed at your own discretion. Some improvements may require the use of suitably qualified installers or professional advice. All works should be completed to the relevant health and safety standards. Where applicable, works should be completed to the relevant Building Regulations. In this report an associated cost and impact are provided for the recommendations specific to your home. Costs and impacts are divided into categories and these are defined as follows: **Low Cost** are improvements that are expected to cost less than 100 euro to complete. **Medium Cost** are improvements that are expected to cost 100 euro to 1,000 euro to complete. **High Cost** are improvements that are expected to cost more than 1,000 euro to complete. The above costs are guidelines only and actual costs will vary depending on house size, work specification and market conditions. **Low Impact** are measures that will make a small improvement in energy efficiency. **Medium Impact** are measures that will make a medium improvement in energy efficiency. **High Impact** are measures that will make a large improvement in energy efficiency. Implementing any improvement measure will reduce your energy consumption. When implementing improvements it is sensible to prioritise those with a low cost and a high impact first. The money saved by reducing energy usage can help to pay for the improvement measures. Moreover apart from increasing the comfort and costs the measures could increase the value of your home and reduce its environmental impact. ## Chimneys This dwelling has no chimneys. No specific action is advised. #### Fan & Vents This dwelling has one or more fans/vents. The fans and vents in this dwelling increase heat loss by allowing heated air to escape but can be important in ensuring adequate ventilation. If there is no cover on the inside of the vents, installing controllable vent covers will allow you to control the air flow through the vents, and so can help reduce heat loss. It is important not to permanently close or cover over air vents as they are required to provide ventilation for the removal of moisture, pollutants and operation of combustion appliances. It is important for safety reasons to have proper ventilation in any room which contains combustion appliances. For further details please refer to publication 'A Detailed Guide to Insulating Your Home' available on www.seai.ie. Cost: Low Impact: Low # **Draught Lobby** This dwelling has a draught lobby. No specific action is advised. # **Suspended Wooden Floor** This dwelling has a solid floor. No specific action is advised. ## **Draught Stripping** This dwelling has 100% draught stripping. No specific action is advised. ## **Ventilation System** This dwelling has natural ventilation. No specific action is advised. #### **Floors** General Operational Advice on Floors Floors can be a source of significant heat loss and dampness in a dwelling. For example heat loss through the ground floor of a two storey house typically accounts for about 10% of total heat loss. For a single storey house this figure is about 15%. However, if a house is well insulated everywhere except for the ground floor, this percentage will be higher. A U-Value is a measure of the heat loss through the fabric of the building. The lower the U-Value the better and the higher the U-Value the greater the heat loss. Floors with a U-Value greater than 0.25 could be improved in a number of ways. A relatively simple way to reduce heat loss through a ground floor is to lay a carpet with foam backing or a foam underlay ensuring that both carpet and underlay are laid wall to wall. Sealing of gaps in the ground floor will help to reduce draughts. Modern insulation methods for new houses may also be implemented in existing houses. In some cases this would be disruptive and costly, but if work needs to be done on the floor anyway, this is a good time to consider an insulation upgrade. For further details please refer to publication 'A Detailed Guide to Insulating Your Home' available on www.seai.ie Part of the floor area in this dwelling has a U-Value of less than 0.6 and greater than 0.25. The insulation in this floor can be improved. Cost: High Impact: Low #### Walls Heat loss through the walls can account for up to 30% of the total heat loss. This can typically be reduced by two-thirds by insulating the walls and so reduce the energy demand of the dwelling. A U-Value is a measure of the heat loss through the building fabric. The lower the U-Value the better and the higher the U-Value the greater the heat loss. Walls with a U-Value greater than 0.27 could be improved. Insulation may be installed as cavity fill. This is where the gap between the inner and outer layers of external walls is filled with an insulating material. If cavity insulation is not applicable or is not technically possible, insulation may be installed internally or externally. Internal insulation involves a layer of insulation being fixed to the inside surface of external walls, and a suitable fire resistant finish being incorporated or applied. External solid wall insulation is the application of an insulant and a weather-protective finish to the outside of the wall. For further details please refer to publication 'A Detailed Guide to Insulating Your Home' available on www.seai.ie Part of the wall area in this dwelling has a U-Value of less than 0.6 and greater than 0.27. The insulation in this wall can be improved. Cost: High Impact: Low ## **Windows** All windows in this dwelling have a U-Value of less than or equal to 2. These windows have reasonable insulation qualities. No specific action is advised. #### **Doors** Part of the door area in this dwelling has a U-Value of less than 4 and greater than or equal to 2.7. The heat loss through this door area can be significantly reduced. Cost: Medium Impact: Low #### **Hot Water** General Operational Advice on Hot Water. Ensure that the hot water cylinder insulation is not disturbed or damaged. Incomplete insulation increases heat loss and costs money. ## **Hot Water Cylinder Insulation** The hot water cylinder has factory fitted insulation. No specific action is advised. #### Lighting General Operational Advice on Lighting Compact Fluorescent Lamps (CFLs) use 20% of the energy used by typical incandescent bulbs to give the same amount of light. A 22 Watt CFL has the same light output as a 100 Watt incandescent. LED (Light-emitting diode) lights use less than 10% of the energy required for corresponding tungsten lights. Low energy lighting will give highest savings in rooms that are most often used. # Dist. System losses and gains (control category) There are good heating system controls in this dwelling. No specific action advised. # Efficiency of Main Heating System (Electricity) General Operational Advice on Efficiency of Electric Heating Systems. Electric storage heaters are more cost effective if you use electricity supplied at a cheaper night-time rate. Checking your tariff with your electricity supplier could save you money. This dwelling has an electric main heating system. Traditional electricity production is energy intensive and the use of direct electric heat sources can have a very negative impact on your BER result. A number of alternatives should be considered. Renewable or Low Carbon heat sources can be considered as replacements for electric heating. Two such alternatives are biomass boilers and heat pumps. A biomass boiler burns renewable fuel such as wood pellets and therefore is less damaging to the environment than fossil fuels. Biomass boilers usually require more fuel storage space than gas/oil boilers. Heat pumps use electricity to extract "free" heat from the ground, air or water. This extracted heat is then used to heat your home. Heat pumps run on electricity but for every one unit of electrity used about 3 to 4 units of heat can be provided. Heat pumps operate more efficiently when providing space heat via an underfloor heating system rather than radiators. Gas or Oil boilers can also be considered as an alternative to electric heating. Where installing a gas or oil boiler a condensing boiler should be used. A condensing gas or oil boiler is capable of much higher efficiencies than other types of boiler, meaning it will burn less fuel to heat this dwelling. While boiler upgrades can be undertaken at your own discretion, please note that, in the case of replacement boilers, it is a mandatory requirement under current Building Regulations that a replacement boiler has a minimum efficiency of 86%. Boilers with efficiencies of greater than 90% are available. Condensing boilers need a drain for the condensate which can limit where they are located. This can be borne in mind if you are considering remodelling the room. For further details please refer to publications "Detailed Guide to Heating Your Home" and "A Guide to Renewable Energy in the Home" available on www.seai.ie Cost: High Impact: High #### **Thermal Solar Panels** This dwelling has no solar water heating. Solar Panels, also known as "collectors", can be fitted to a building's roof. They use the sun's heat to warm water, or another fluid, which passes through the panel. The fluid is then fed to a heat store (e.g. a hot water tank) and helps provide hot water directly or can provide a source of hot water for the central heating system in the dwelling. Solar panels work throughout daylight hours, even if the sky is overcast and there is no direct sunshine. Solar panels can also be used to meet some space heating demand. Ideally the panels should be located on an unshaded, south facing roof at a tilt angle of 30°- 45° to the horizontal. Space will be need to accommodate an appropriately sized cylinder for the system and a thermal mixing (anti-scald) valve should also be installed. Cost: High Impact: Medium # General Advice on Energy Use in Your Home The way we use energy in our homes can reduce energy consumption. Some simple everyday measures will save money, improve comfort and reduce your impact on the environment. Some of these are outlined below. Appliances: New kitchen appliances carry an energy rating label which rates energy efficiency on a scale of A to G. When buying new appliances look for A rated products which are more energy efficient and cost less to run. Do not under or overload appliances, such as dishwashers and washing machines. For washing machines, a 40°C rather than a 60°C wash cycle cuts electricity use by approximately a third. (Modern washing powders and detergents can work equally effectively at lower temperatures.) Defrost your freezer regularly to save energy and extend the operating life. Equipment on standby uses up to 20% of the energy it would use when fully on. When an appliance is not in use, turn it off fully. **Lighting:** Avail of natural daylight whenever possible and avoid leaving electric lights switched on in unoccupied rooms. All lighting lamps carry an energy label similar to that on appliances (i.e. an A to G label) so always choose the most efficient to suit your particular needs. ## Useful Links and Sources of Further Information Useful energy saving tips are available on www.change.ie (Tel. 1890 242643) and www.powerofone.ie. For specific queries on BER please contact SEAI on 1890734237 or by email info@ber.seai.ie. There are many useful documents available on The Sustainable Energy Authority of Ireland's (SEAI) website www.seai.ie The most recent Technical Guidance Documents for the Building Regulations and other supporting documents are available from the Department of Environment, Heritage and Local Government website www.environ.ie on the link to Building Standards (Tel. 1890 202021). Some of these documents are listed below. Technical Guidance Document Part L Conservation of Fuel and Energy - Dwellings; Technical Guidance Document Part J Heat Producing Appliances; Technical Guidance Document Part F Ventilation. When performing building works it is important to take the correct health and safety measures. Useful health and safety information on ventilation, radon and combustion devices can be found on the Carbon Monoxide safety website: www.carbonmonoxide.ie Tel. 1850797979 and The Radiological Protect Institute of Ireland website www.rpii.ie/radon Tel. 01 269 77 66. Please consider the environment before printing this document Further advice on improving the energy efficiency of your home is available from the Sustainable Energy Authority of Ireland, www.seai.ie Wilton Park House, Wilton Place, Dublin 2, Ireland | T. +353-1-8082100 | info@seai.ie Teach Pháirc Wilton, Plás Wilton, Baile Átha Cliath 2, Eireann | F. +353-1-8082002 | www.seai.ie